Μοριοδοτούμενο σεμινάριο επιμόρφωσης με πιστοποίηση από το πανεπιστήμιο Θεσσαλίας για τοπικές επιχειρήσεις
ΠΡΟΣΚΛΗΣΗ ΕΚΔΗΛΩΣΗΣ ΕΝΔΙΑΦΕΡΟΝΤΟΣ
ΟΔΗΓΟΣ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑΤΟΣ
«Τεχνητή Νοημοσύνη και Μηχανική Μάθηση: Θεωρία και Εφαρμογές»
Εισαγωγή
Το ΚΕ.ΔΙ.ΒΙ.Μ. του Δ.Π.Θ διοργανώνει για τέταρτη φορά (δ` κύκλος) το Εκπαιδευτικό/Επιμορφωτικό Πρόγραμμα με τίτλο: «Τεχνητή Νοημοσύνη και Μηχανική Μάθηση: Θεωρία και Εφαρμογές» από 4/3/2024 έως 4/7/2024 με Eπιστημονικό και Ακαδημαϊκό Yπεύθυνο τον Καθηγητή κ. Περικλή Γκόγκα.
Σκοπός του προγράμματος
Η επιστημονική ταξινόμηση και πρόγνωση παραδοσιακά γίνεται με μεθόδους των Μαθηματικών, της Στατιστικής και της Οικονομετρίας. Τα τελευταία 30 χρόνια παράλληλα, εμφανίστηκαν νέες προσεγγίσεις, προερχόμενες κυρίως από τις Πολυτεχνικές Σχολές: Η Τεχνητή Νοημοσύνη (ΤΝ) και η Μηχανική Μάθηση (ΜΜ), δυο αλληλένδετες έννοιες που περικλείουν υπολογιστικά συστήματα, μεθοδολογίες και τεχνικές. Οι εφαρμογές τους σε πραγματικά προβλήματα, έφεραν αποτελέσματα συγκρίσιμα και πολλές φορές καλύτερα από τις παραδοσιακές μεθοδολογικές προσεγγίσεις. Το Πρόγραμμα θα καλύψει το κενό που υπάρχει αναφορικά με την πρακτική και εμπειρική χρήση της ΤΝ και ΜΜ σε πραγματικά προβλήματα πρόβλεψης και ταξινόμησης.
Το πρόγραμμα εισάγει και εκπαιδεύει τους καταρτιζόμενους στις μεθοδολογίες και τεχνικές της τεχνητής νοημοσύνης και μηχανικής μάθησης με πρακτικές εφαρμογές.
Γίνεται παρουσίαση όλων των σημαντικών αλγορίθμων μηχανικής μάθησης και τεχνητής νοημοσύνης. Οι τεχνικές αυτές αντιπαραβάλλονται με κλασικές σχετικές μεθόδους για λόγους σύγκρισης και κατανόησης των ομοιοτήτων και διαφορών.
Στόχος του προγράμματος είναι η κατανόηση της εφαρμογής των αλγορίθμων της ΤΝ και ΜΜ, χωρίς (απαραίτητα) εμβάθυνση στο μαθηματικό, αλγοριθμικό ή προγραμματιστικό κομμάτι των μεθόδων αυτών. Έτσι, αυτές μπορούν να γίνουν γνωστές και να αποτελέσουν εργαλεία πρακτικής και άμεσα εφαρμόσιμης οικονομικής και επιχειρηματικής ανάλυσης-πρόβλεψης από τον κάθε ενδιαφερόμενο χωρίς προηγούμενη σχετική εξειδικευμένη γνώση.
Παρουσιάζονται και χρησιμοποιούνται όλοι οι σχετικοί αλγόριθμοι και μεθοδολογίες τόσο μη-επιβλεπόμενης μάθησης, όπως K-Means, Hierarchical Clustering για ομαδοποίηση, μείωση διαστάσεων, ανίχνευση ανωμαλιών κλπ, όπως και επιβλεπόμενης μάθησης, νευρωνικά δίκτυα, Support Vector Machines-Regression, Decision Trees, Random Forests, γραμμική λογιστική παλινδρόμηση, K-Nearest Neighbors κλπ καθώς και με τις σχετικές Boosting και Bagging τεχνικές.
Οι καταρτιζόμενοι εκπαιδεύονται στην βασική χρήση της γλώσσας Python χωρίς να απαιτείται καμία προηγούμενη σχετική γνώση. Παρέχεται σχετική εργαλειοθήκη (toolbox) με έτοιμο κώδικα Python που μπορεί να χρησιμοποιηθεί άμεσα σε οποιοδήποτε πρόβλημα πρόβλεψης ή ταξινόμησης τόσο κατά την διάρκεια του προγράμματος όσο και έπειτα ανεξάρτητα από αυτό στην εργασία τους ή σε τυχόν περαιτέρω σπουδές τους.
Μοριοδοτούμενο σεμινάριο επιμόρφωσης με πιστοποίηση από το πανεπιστήμιο Θεσσαλίας για τοπικές επιχειρήσεις
Μοριοδοτούμενο σεμινάριο επιμόρφωσης excel με πιστοποίηση από το πανεπιστήμιο Θεσσαλίας
Dexiotites.gr